Part Number Hot Search : 
HA1732 SG2003 GBPC1002 0100P BH55471J A1142EUA 10A07 2741H
Product Description
Full Text Search
 

To Download MAX19998ETP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-4827; Rev 0; 10/09
TION KIT EVALUA BLE AVAILA
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
General Description
The MAX19998 single, high-linearity downconversion mixer provides 8.7dB of conversion gain, +24.3dBm input IP3, +11.3dBm 1dB input compression point, and a noise figure of 9.7dB for 2300MHz to 4000MHz WiMAXK, LTE, and MMDS receiver applications. With an ultra-wide LO 2600MHz to 4300MHz frequency range, the MAX19998 can be used in either low-side or high-side LO injection architectures for virtually all 2.5GHz and 3.5GHz applications. For a 2.5GHz variant tuned specifically for high-side injection, refer to the MAX19996A. In addition to offering excellent linearity and noise performance, the MAX19998 also yields a high level of component integration. This device includes a doublebalanced passive mixer core, an IF amplifier, and an LO buffer. On-chip baluns are also integrated to allow for single-ended RF and LO inputs. The MAX19998 requires a nominal LO drive of 0dBm, and supply current is typically 230mA at VCC = 5.0V or 150mA at VCC = 3.3V. The MAX19998 is pin compatible with the MAX19996/ MAX19996A 2000MHz to 3900MHz mixer family. The device is also pin similar with the MAX9984/MAX9986/ MAX9986A 400MHz to 1000MHz mixers and the MAX9993/MAX9994/MAX9996 1700MHz to 2200MHz mixers, making this entire family of downconverters ideal for applications where a common PCB layout is used for multiple frequency bands. The MAX19998 is available in a compact, 5mm x 5mm, 20-pin thin QFN with an exposed pad. Electrical performance is guaranteed over the extended -40NC to +85NC temperature range.
Features
S 2300MHz to 4000MHz RF Frequency Range S 2600MHz to 4300MHz LO Frequency Range S 50MHz to 500MHz IF Frequency Range S 8.7dB Conversion Gain S 9.7dB Noise Figure S +24.3dBm Typical Input IP3 S +11.3dBm Typical Input 1dB Compression Point S 67dBc Typical 2RF - 2LO Spurious Rejection at PRF = -10dBm S Integrated LO Buffer S Integrated RF and LO Baluns for Single-Ended Inputs S Low -3dBm to +3dBm LO Drive S Pin Compatible with the MAX19996/MAX19996A 2000MHz to 3900MHz Mixers S Pin Similar with the MAX9984/MAX9986/ MAX9986A Series of 400MHz to 1000MHz Mixers and the MAX9993/MAX9994/MAX9996 Series of 1700MHz to 2200MHz Mixers S Single 5.0V or 3.3V Supply S External Current-Setting Resistors Provide Option for Operating Device in Reduced-Power/ReducedPerformance Mode
MAX19998
Applications
2.5GHz WiMAX and LTE Base Stations 2.7GHz MMDS Base Stations 3.5GHz WiMAX and LTE Base Stations Fixed Broadband Wireless Access Wireless Local Loop Private Mobile Radios Military Systems
Ordering Information
PART MAX19998ETP+ MAX19998ETP+T TEMP RANGE -40NC to +85NC -40NC to +85NC PIN-PACKAGE 20 Thin QFN-EP* 20 Thin QFN-EP*
+Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. T = Tape and reel.
WiMAX is a trademark of WiMAX Forum.
_______________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998
ABSOLUTE MAXIMUM RATINGS
VCC to GND..........................................................-0.3V to +5.5V IF+, IF-, LOBIAS, IFBIAS to GND ............. -0.3V to (VCC + 0.3V) RF, LO Input Power ....................................................... +12dBm RF, LO Current (RF and LO is DC shorted to GND through balun) ........50mA Continuous Power Dissipation (Note 1) .................................5W BJA (Notes 2, 3) ............................................................ +38NC/W BJC (Notes 1, 3) ............................................................ +13NC/W Operating Case Temperature Range (Note 4).................................................. TC = -40NC to +85NC Junction Temperature .....................................................+150NC Storage Temperature Range............................ -65NC to +150NC Lead Temperature (soldering, 10s) ................................+300NC
Note 1: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150NC. Note 2: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed +150NC. Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, R1 = 698, R2 = 604, VCC = 4.75V to 5.25V, no input RF or LO signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 5.0V, TC = +25NC, all parameters are production tested.) PARAMETER Supply Voltage Supply Current SYMBOL VCC ICC Total supply current CONDITIONS MIN 4.75 TYP 5.0 230 MAX 5.25 247 UNITS V mA
3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, R1 = 845, R2 = 1.1k, VCC = 3.0V to 3.6V, no input RF or LO signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 3.3V, TC = +25NC, parameters are guaranteed by design, unless otherwise noted.) (Note 5) PARAMETER Supply Voltage Supply Current SYMBOL VCC ICC Total supply current CONDITIONS MIN 3.0 TYP 3.3 150 MAX 3.6 UNITS V mA
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER RF Frequency Range LO Frequency SYMBOL fRF fLO (Notes 5, 6) (Notes 5, 6) Using a Mini-Circuits TC4-1W-17 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6) Using a Mini-Circuits TC4-1W-7A 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6) CONDITIONS MIN 2300 2600 100 TYP MAX 4000 4300 500 MHz 50 -3 0 250 +3 dBm UNITS MHz MHz
IF Frequency
fIF
LO Drive
PLO
2
______________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698, R2 = 604, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 2800MHz to 3600MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Gain SYMBOL GC CONDITIONS TC = +25NC (Notes 8, 9) fRF = 3100MHz to 3900MHz, any 100MHz band fRF = 3100MHz to 3900MHz, any 200MHz band fRF = 3100MHz to 3900MHz, TC = -40NC to +85NC (Note 10) fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = +25NC (Note 9) fRF = 3100MHz to 3900MHz, fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = -40NC to +85NC NFSSB TCNF No blockers present (Note 5) No blockers present, TC = +25NC (Note 5) Single sideband, no blockers present, TC = -40NC to +85NC +8dBm blocker tone applied to RF port, fRF = 3500MHz, fLO = 3200MHz, fBLOCKER = 3750MHz, PLO = 0dBm, VCC = +5.0V, TC = +25NC (Notes 5, 11) fSPUR = fLO + 150MHz fSPUR = fLO + 100MHz PRF = -10dBm (Note 5) PRF = -5dBm (Note 9) PRF = -10dBm (Note 5) PRF = -5dBm (Note 9) 63 58 80 70 10.0 22 MIN 7.6 TYP 8.7 0.15 dB 0.3 -0.01 11.4 24.3 Q0.2 9.7 9.7 0.018 12.5 11.0 dB/NC dBm dBm dBm dB dB/NC MAX 9.4 UNITS dB
MAX19998
Gain Variation vs. Frequency
DGC
Conversion Gain Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point IIP3 Variation with TC Single-Sideband Noise Figure Noise Figure Temperature Coefficient Noise Figure Under Blocking
TCCG IP1dB IIP3
NFB
21 67 62 85 75 25 16 200 20 20
25
dB
2RF - 2LO Spur Rejection 3RF - 3LO Spur Rejection RF Input Return Loss LO Input Return Loss IF Output Impedance
2x2 3x3 RLRF RLLO ZIF
dBc dBc dB dB I
LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit. See the Typical Operating Characteristics for performance vs. inductor values. fIF = 450MHz, L1 = L2 = 120nH fIF = 350MHz, L1 = L2 = 270nH fIF = 300MHz, L1 = L2 = 390nH
IF Output Return Loss
RLIF
dB 20
_______________________________________________________________________________________
3
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION (continued)
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698, R2 = 604, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 2800MHz to 3600MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7) PARAMETER RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port SYMBOL CONDITIONS fRF = 3500MHz, PLO = +3dBm (Note 9) fLO = 2800MHz to 3600MHz, PLO = +3dBm (Note 9) PLO = +3dBm PLO = +3dBm (Note 9) MIN 27 TYP 29.5 -26 -29 -22 MAX UNITS dB dBm dBm dBm
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 845, R2 = 1.1k, RF and LO ports are driven from 50I sources, fRF > fLO. Typical values are for TC = +25NC, VCC = 3.3V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Gain Gain Variation vs. Frequency Conversion Gain Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point IIP3 Variation with TC Single-Sideband Noise Figure Noise Figure Temperature Coefficient 2RF - 2LO Spur Rejection 3RF - 3LO Spur Rejection RF Input Return Loss LO Input Return Loss IF Output Impedance NFSSB TCNF 2x2 3x3 RLRF RLLO ZIF SYMBOL GC DGC TCCG IP1dB IIP3 fRF = 3100MHz to 3900MHz, any 100MHz band fRF = 3100MHz to 3900MHz, TC = -40NC to +85NC (Note 10) fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = -40NC to +85NC No blockers present Single sideband, no blockers present, TC = -40NC to +85NC fSPUR = fLO + 150MHz fSPUR = fLO + 100MHz PRF = -10dBm PRF = -5dBm PRF = -10dBm PRF = -5dBm CONDITIONS MIN TYP 8.4 0.15 -0.01 7.7 20.1 Q0.2 9.3 0.018 64 59 74 64 30 20 200 MAX UNITS dB dB dB/NC dBm dBm dB dB dB/NC dBc dBc dB dB I
LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs
4
______________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION (continued)
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 845, R2 = 1.1k, RF and LO ports are driven from 50I sources, fRF > fLO. Typical values are for TC = +25NC, VCC = 3.3V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, unless otherwise noted.) (Note 7) PARAMETER SYMBOL CONDITIONS RF terminated into 50I, LO fIF = 450MHz, L1 = L2 = 120nH driven by 50I source, IF transformed to 50I using fIF = 350MHz, external components shown L1 = L2 = 270nH in the Typical Application Circuit. See the Typical fIF = 300MHz, Operating Characteristics for performance vs. inductor L1 = L2 = 390nH values. fRF = 3100MHz to 3900MHz, PLO = +3dBm fLO = 2800MHz to 3600MHz, PLO = +3dBm fLO = 2800MHz to 3600MHz, PLO = +3dBm fLO = 2800MHz to 3600MHz, PLO = +3dBm MIN TYP 17 17 dB 17 MAX UNITS
MAX19998
IF Output Return Loss
RLIF
RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port
27 -30 -26.5 -27.5
dB dBm dBm dBm
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698, R2 = 604, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 3400MHz to 4200MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Gain SYMBOL GC TC = +25NC fRF = 3100MHz to 3900MHz, any 100MHz band fRF = 3100MHz to 3900MHz, any 200MHz band fRF = 3100MHz to 3900MHz, TC = -40NC to +85NC (Note 10) fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = +25NC fRF = 3100MHz to 3900MHz, fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = -40NC to +85NC NFSSB TCNF 2x2 3x3 No blockers present Single sideband, no blockers present, TC = -40NC to +85NC fSPUR = fLO - 150MHz fSPUR = fLO - 100MHz PRF = -10dBm PRF = -5dBm PRF = -10dBm PRF = -5dBm CONDITIONS MIN TYP 8.4 0.15 dB 0.3 -0.01 11.4 24.8 Q0.2 9.8 0.018 70 65 89 79 dB/NC dBm dBm dBm dB dB/NC dBc dBc MAX UNITS dB
Gain Variation vs. Frequency
DGC
Conversion Gain Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point IIP3 Variation with TC Single-Sideband Noise Figure Noise Figure Temperature Coefficient 2LO - 2RF Spur Rejection 3LO - 3RF Spur Rejection
TCCG IP1dB IIP3
_______________________________________________________________________________________
5
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION (continued)
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698, R2 = 604, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 3100MHz to 3900MHz, fIF = 300MHz, fLO = 3400MHz to 4200MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz, unless otherwise noted.) (Note 7) PARAMETER RF Input Return Loss LO Input Return Loss IF Output Impedance SYMBOL RLRF RLLO ZIF CONDITIONS LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit. See the Typical Operating Characteristics for performance vs. inductor values. PLO = +3dBm PLO = +3dBm PLO = +3dBm PLO = +3dBm fIF = 450MHz, L1 = L2 = 120nH fIF = 350MHz, L1 = L2 = 270nH MIN TYP 24 18 200 20 20 dB fIF = 300MHz, L1 = L2 = 390nH 20 MAX UNITS dB dB I
IF Output Return Loss
RLIF
RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port
30 -30.3 -19 -23
dB dBm dBm dBm
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 2300MHz to 2900MHz, HIGH-SIDE LO INJECTION
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698, R2 = 604, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2600MHz to 3200MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Gain SYMBOL GC TC = +25NC fRF = 2300MHz to 2900MHz, any 100MHz band fRF = 2300MHz to 2900MHz, any 200MHz band fRF = 2300MHz to 2900MHz, TC = -40NC to +85NC (Note 10) fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = +25NC CONDITIONS MIN TYP 8.4 0.15 dB 0.3 -0.01 11.4 25.0 dB/NC dBm dBm MAX UNITS dB
Gain Variation vs. Frequency
DGC
Conversion Gain Temperature Coefficient Input 1dB Compression Point Third-Order Input Intercept Point
TCCG IP1dB IIP3
6
______________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS--fRF = 2300MHz to 2900MHz, HIGH-SIDE LO INJECTION (continued)
(Typical Application Circuit, with tuning elements outlined in Table 1, R1 = 698, R2 = 604, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2600MHz to 3200MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted. (Note 7) PARAMETER IIP3 Variation with TC Single-Sideband Noise Figure Noise Figure Temperature Coefficient 2LO - 2RF Spur Rejection 3LO - 3RF Spur Rejection RF Input Return Loss LO Input Return Loss IF Output Impedance NFSSB TCNF 2x2 3x3 RLRF RLLO ZIF SYMBOL CONDITIONS fRF = 2300MHz to 2900MHz, fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = -5dBm/tone, TC = -40NC to +85NC No blockers present Single sideband, no blockers present, TC = -40NC to +85NC fSPUR = fLO - 50MHz fSPUR = fLO - 100MHz PRF = -10dBm PRF = -5dBm PRF = -10dBm PRF = -5dBm MIN TYP Q0.2 10.0 0.018 77 72 86 76 30 18 200 25 25 dB fIF = 300MHz, L1 = L2 = 390nH 25 MAX UNITS dBm dB dB/NC dBc dBc dB dB I
MAX19998
LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance Nominal differential impedance at the IC's IF outputs RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit. See the Typical Operating Characteristics for performance vs. inductor values. PLO = +3dBm PLO = +3dBm PLO = +3dBm PLO = +3dBm fIF = 450MHz, L1 = L2 = 120nH fIF = 350MHz, L1 = L2 = 270nH
IF Output Return Loss
RLIF
RF-to-IF Isolation LO Leakage at RF Port 2LO Leakage at RF Port LO Leakage at IF Port Note 5: Note 6:
45 -28.8 -42.3 -26.3
dB dBm dBm dBm
Not production tested. Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics. Note 7: All limits reflect losses of external components, including a 0.8dB loss at fIF = 300MHz due to the 4:1 impedance transformer. Output measurements were taken at IF outputs of the Typical Application Circuit. Note 8: Guaranteed by design and characterization. Note 9: 100% production tested for functional performance. Note 10: Maximum reliable continuous input power applied to the RF port of this device is +12dBm from a 50I source. Note 11: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.
_______________________________________________________________________________________
7
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
MAX19998 toc01
CONVERSION GAIN vs. RF FREQUENCY
MAX19998 toc02
CONVERSION GAIN vs. RF FREQUENCY
MAX19998 toc03
11 10 CONVERSION GAIN (dB) 9 8 7 6 3000 3200 3400 3600 3800
11 10 CONVERSION GAIN (dB) 9 8 7 6
11 10 CONVERSION GAIN (dB) 9 8 7 6
TC = -40C TC = +25C
PLO = -3dBm, 0dBm, +3dBm
VCC = 4.75V, 5.0V, 5.25V
TC = +85C
4000
3000
3200
3400
3600
3800
4000
3000
3200
3400
3600
3800
4000
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
MAX19998 toc04
INPUT IP3 vs. RF FREQUENCY
MAX19998 toc05
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE VCC = 5.25V
INPUT IP3 (dBm) 25
MAX19998 toc06 MAX19998 toc09
26
PRF = -5dBm/TONE TC = +25C
26
PRF = -5dBm/TONE
26
INPUT IP3 (dBm)
24
INPUT IP3 (dBm)
25
TC = +85C
25
24
TC = -40C
PLO = -3dBm, 0dBm, +3dBm
24
VCC = 5.0V
VCC = 4.75V
23 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
23 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
23 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX19998 toc07
2RF - 2LO RESPONSE vs. RF FREQUENCY
PRF = -5dBm
MAX19998 toc08
2RF - 2LO RESPONSE vs. RF FREQUENCY
90
90
PRF = -5dBm
90
PRF = -5dBm
2RF - 2LO RESPONSE (dBc)
2RF - 2LO RESPONSE (dBc)
80
80
2RF - 2LO RESPONSE (dBc)
80
70
TC = +85C TC = +25C
70
PLO = +3dBm
70
60
60
60
PLO = 0dBm TC = -40C
50 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 50 3000 3200 3400
PLO = -3dBm
50 3600 3800 4000 3000
VCC = 4.75V, 5.0V, 5.25V
3200 3400 3600 3800 4000
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
8
______________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
3RF - 3LO RESPONSE vs. RF FREQUENCY
MAX19998 toc10
MAX19998
3RF - 3LO RESPONSE vs. RF FREQUENCY
MAX19998 toc11
3RF - 3LO RESPONSE vs. RF FREQUENCY
PRF = -5dBm
MAX19998 toc12 MAX19998 toc18 MAX19998 toc15
85
PRF = -5dBm
85
PRF = -5dBm
85
3RF - 3LO RESPONSE (dBc)
3RF - 3LO RESPONSE (dBc)
75
75
3RF - 3LO RESPONSE (dBc)
75
TC = -40C, +25C, +85C
65
PLO = -3dBm, 0dBm, +3dBm
65
VCC = 4.75V, 5.0V, 5.25V
65
55 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
55 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
55 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
MAX19998 toc13
NOISE FIGURE vs. RF FREQUENCY
MAX19998 toc14
NOISE FIGURE vs. RF FREQUENCY
12 11 NOISE FIGURE (dB) 10 9 8 7
12 11 NOISE FIGURE (dB) 10 9 8
12 11 NOISE FIGURE (dB) 10 9 8
TC = +85C
TC = +25C
PLO = -3dBm, 0dBm, +3dBm
VCC = 4.75V, 5.0V, 5.25V
TC = -40C
7 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 7 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 3000 3200 3400 3600 3800 4000
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
TC = +85C
12 INPUT P1dB (dBm)
MAX19998 toc16
INPUT P1dB vs. RF FREQUENCY
MAX19998 toc17
INPUT P1dB vs. RF FREQUENCY
13
13
13
12 INPUT P1dB (dBm)
12 INPUT P1dB (dBm)
VCC = 5.0V
VCC = 5.25V
11
11
11
TC = -40C
10
TC = +25C
PLO = -3dBm, 0dBm, +3dBm
10
VCC = 4.75V
10
9 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
9 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
9 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
_______________________________________________________________________________________
9
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19998 toc19
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19998 toc20
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19998 toc21
-10
-10
-10
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT (dBm)
TC = +85C
-20
-20
LO LEAKAGE AT IF PORT (dBm)
-20
-30
TC = +25C TC = -40C
-30
PLO = -3dBm, 0dBm, +3dBm
-30
VCC = 4.75V, 5.0V, 5.25V
-40 2700 2900 3100 3300 3500 3700 LO FREQUENCY (MHz)
-40 2700 2900 3100 3300 3500 3700 LO FREQUENCY (MHz)
-40 2700 2900 3100 3300 3500 3700 LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19998 toc22
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19998 toc23
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19998 toc24
50
50
50
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
TC = +85C
30
30
RF-TO-IF ISOLATION (dB)
40
40
40
30
20
TC = +25C
TC = -40C
20
PLO = -3dBm, 0dBm, +3dBm
20
VCC = 4.75V, 5.0V, 5.25V
10 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
10 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
10 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc25
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc26
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc27
-20 LO LEAKAGE AT RF PORT (dBm)
-20 LO LEAKAGE AT RF PORT (dBm)
-20 LO LEAKAGE AT RF PORT (dBm)
-25
TC = -40C
-25
-25
-30
TC = +85C TC = +25C
-30
PLO = -3dBm, 0dBm, +3dBm
-30
VCC = 4.75V, 5.0V, 5.25V
-35
-35
-35
-40 2500 3000 3500 4000 LO FREQUENCY (MHz)
-40 2500 3000 3500 4000 LO FREQUENCY (MHz)
-40 2500 3000 3500 4000 LO FREQUENCY (MHz)
10
_____________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc28
MAX19998
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc29
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc30
-10 2LO LEAKAGE AT RF PORT (dBm)
-10 2LO LEAKAGE AT RF PORT (dBm)
-10 2LO LEAKAGE AT RF PORT (dBm)
-20
TC = +25C TC = -40C
-20
-20
-30
TC = +85C
-30
-30
-40
-40
-40
PLO = -3dBm, 0dBm, +3dBm
-50
VCC = 4.75V, 5.0V, 5.25V
-50 2500 3000 3500 4000 LO FREQUENCY (MHz)
-50 2500 3000 3500 4000 2500 3000 3500 4000 LO FREQUENCY (MHz) LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
MAX19998 toc31
IF PORT RETURN LOSS vs. IF FREQUENCY
fLO = 3600MHz
MAX19998 toc32
0
fIF = 300MHz
0 10 20 30 40 50
RF PORT RETURN LOSS (dB)
10
20
IF PORT RETURN LOSS (dB)
VCC = 4.75V, 5.0V, 5.25V
30
PLO = -3dBm, 0dBm, +3dBm
40 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
50
140
230
320
410
500
IF FREQUENCY (MHz)
LO PORT RETURN LOSS vs. LO FREQUENCY
MAX19998 toc33
SUPPLY CURRENT vs. TEMPERATURE (TC)
MAX19998 toc34
0
250 240 SUPPLY CURRENT (mA) 230 220
LO PORT RETURN LOSS (dB)
VCC = 5.25V
10
PLO = -3dBm
VCC = 5.0V
20
PLO = 0dBm
VCC = 4.75V
210 200
PLO = +3dBm
30 2600 2950 3300 3650 4000 LO FREQUENCY (MHz)
-40
-15
10
35
60
85
TEMPERATURE (C)
______________________________________________________________________________________
11
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
MAX19998 toc35
CONVERSION GAIN vs. RF FREQUENCY
MAX19998 toc36
CONVERSION GAIN vs. RF FREQUENCY
MAX19998 toc37
10 TC = -40NC CONVERSION GAIN (dB) 9 VCC = 3.3V
10 VCC = 3.3V CONVERSION GAIN (dB) 9
10
TC = +25NC
8
8 PLO = -3dBm, 0dBm, +3dBm 7
CONVERSION GAIN (dB)
9
8 VCC = 3.0V, 3.3V, 3.6V 7
7
TC = +85NC
6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
MAX19998 toc38
INPUT IP3 vs. RF FREQUENCY
MAX19998 toc39
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE
MAX19998 toc40
22
VCC = 3.3V PRF = -5dBm/TONE TC = +85NC
22
VCC = 3.3V PRF = -5dBm/TONE
22
21 INPUT IP3 (dBm)
21 INPUT IP3 (dBm)
21 INPUT IP3 (dBm)
VCC = 3.6V
VCC = 3.3V
20 TC = +25NC TC = -40NC 19
20 PLO = -3dBm, 0dBm, +3dBm 19
20 VCC = 3.0V 19
18 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
18 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
18 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX19998 toc41
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX19998 toc42
2RF - 2LO RESPONSE vs. RF FREQUENCY
PRF = -5dBm 2RF - 2LO RESPONSE (dBc) 80 70 60 50 40 VCC = 3.0V, 3.3V, 3.6V
MAX19998 toc43
90 80 70 60 50 40 3000 3200 3400 3600 TC = -40NC TC = +25NC TC = +85NC
VCC = 3.3V PRF = -5dBm
90 80 70 60 50 40 PLO = 0dBm VCC = 3.3V PRF = -5dBm
90
2RF - 2LO RESPONSE (dBc)
2RF - 2LO RESPONSE (dBc)
PLO = +3dBm
PLO = -3dBm
3800
4000
3000
3200
3400
3600
3800
4000
3000
3200
3400
3600
3800
4000
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
12
_____________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
3RF - 3LO RESPONSE vs. RF FREQUENCY
MAX19998 toc44
MAX19998
3RF - 3LO RESPONSE vs. RF FREQUENCY
MAX19998 toc45
3RF - 3LO RESPONSE vs. RF FREQUENCY
PRF = -5dBm 3RF - 3LO RESPONSE (dBc) 70 VCC = 3.0V 65 60 55 50 VCC = 3.6V
MAX19998 toc46
75 70 65 60 55 50 3000 3200 3400 3600
VCC = 3.3V PRF = -5dBm
75 70 65 60 55 50
VCC = 3.3V PRF = -5dBm
75
3RF - 3LO RESPONSE (dBc)
TC = -40C, +25C, +85C
3RF - 3LO RESPONSE (dBc)
PLO = -3dBm, 0dBm, +3dBm
VCC = 3.3V
3800
4000
3000
3200
3400
3600
3800
4000
3000
3200
3400
3600
3800
4000
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
MAX19998 toc47
NOISE FIGURE vs. RF FREQUENCY
MAX19998 toc48
NOISE FIGURE vs. RF FREQUENCY
MAX19998 toc49
12 VCC = 3.3V 11 NOISE FIGURE (dB) 10 9 8 7 3000 3200 3400 3600 3800 TC = +85NC
12 VCC = 3.3V 11 NOISE FIGURE (dB) 10 9 PLO = -3dBm, 0dBm, +3dBm 8 7
12 11 NOISE FIGURE (dB) 10 9 VCC = 3.0V, 3.3V, 3.6V 8 7
TC = +25NC
TC = -40NC
4000
3000
3200
3400
3600
3800
4000
3000
3200
3400
3600
3800
4000
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
MAX19998 toc50
INPUT P1dB vs. RF FREQUENCY
MAX19998 toc51
INPUT P1dB vs. RF FREQUENCY
MAX19998 toc52
9 TC = +85NC INPUT P1dB (dBm) 8 VCC = 3.3V
9 VCC = 3.3V
9
VCC = 3.6V INPUT P1dB (dBm) 8
INPUT P1dB (dBm)
8
7 TC = -40NC
TC = +25NC
PLO = -3dBm, 0dBm, +3dBm 7
VCC = 3.3V 7
VCC = 3.0V
6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
6 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
______________________________________________________________________________________
13
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19998 toc53
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19998 toc54
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19998 toc55
-10 VCC = 3.3V LO LEAKAGE AT IF PORT (dBm) -20
-10 VCC = 3.3V LO LEAKAGE AT IF PORT (dBm) -20
-10
LO LEAKAGE AT IF PORT (dBm)
-20
VCC = 3.6V
-30 TC = -40C, +25C, +85C -40
-30 PLO = -3dBm, 0dBm, +3dBm -40
-30 VCC = 3.3V -40 VCC = 3.0V
-50 2700 2900 3100 3300 3500 3700 LO FREQUENCY (MHz)
-50 2700 2900 3100 3300 3500 3700 LO FREQUENCY (MHz)
-50 2700 2900 3100 3300 3500 3700 LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19998 toc56
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19998 toc57
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19998 toc58
50 VCC = 3.3V RF-TO-IF ISOLATION (dB) 40 TC = +85NC 30 TC = +25NC TC = -40NC
50 VCC = 3.3V RF-TO-IF ISOLATION (dB) 40
50
30 PLO = -3dBm, 0dBm, +3dBm
RF-TO-IF ISOLATION (dB)
40
30 VCC = 3.0V, 3.3V, 3.6V 20
20
20
10 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
10 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
10 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc59
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc60
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc61
-20 VCC = 3.3V LO LEAKAGE AT RF PORT (dBm) -25 TC = -40C, +25C, +85C -30
-20 VCC = 3.3V LO LEAKAGE AT RF PORT (dBm) -25 PLO = -3dBm, 0dBm, +3dBm -30
-20 LO LEAKAGE AT RF PORT (dBm)
-25 VCC = 3.6V -30 VCC = 3.3V -35 VCC = 3.0V
-35
-35
-40 2500 3000 3500 4000 LO FREQUENCY (MHz)
-40 2500 3000 3500 4000 LO FREQUENCY (MHz)
-40 2500 3000 3500 4000 LO FREQUENCY (MHz)
14
_____________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc62
MAX19998
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc63
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc64
-10 VCC = 3.3V 2LO LEAKAGE AT RF PORT (dBm) -20 TC = -40NC -30 TC = +25NC
-10 VCC = 3.3V 2LO LEAKAGE AT RF PORT (dBm) -20
-10 2LO LEAKAGE AT RF PORT (dBm)
-20 VCC = 3.0V -30 VCC = 3.3V VCC = 3.6V
-30
-40
TC = +85NC
-40
PLO = -3dBm, 0dBm, +3dBm
-40
-50 2500 3000 3500 4000 LO FREQUENCY (MHz)
-50 2500 3000 3500 4000 LO FREQUENCY (MHz)
-50 2500 3000 3500 4000 LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
MAX19998 toc65
VCC = 3.3V fIF = 300MHz RF PORT RETURN LOSS (dB) 10 PLO = -3dBm, 0dBm, +3dBm 20
fLO = 3600MHz IF PORT RETURN LOSS (dB) 10 20 30 40 VCC = 3.0V, 3.3V, 3.6V
30
40 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
50 50 140 230 320 410 500 IF FREQUENCY (MHz)
LO PORT RETURN LOSS vs. LO FREQUENCY
MAX19998 toc67
VCC = 3.3V LO PORT RETURN LOSS (dB)
VCC = 3.6V SUPPLY CURRENT (mA) 150
10 PLO = -3dBm PLO = 0dBm
20 PLO = +3dBm 30 2600 2950 3300 3650 4000 LO FREQUENCY (MHz)
VCC = 3.3V 140 VCC = 3.0V
130 -40 -15 10 35 60 85 TEMPERATURE (C)
______________________________________________________________________________________
MAX19998 toc68
0
SUPPLY CURRENT vs. TEMPERATURE (TC)
160
MAX19998 toc66
0
IF PORT RETURN LOSS vs. IF FREQUENCY
0
15
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
MAX19998 toc69
CONVERSION GAIN vs. RF FREQUENCY
MAX19998 toc70
CONVERSION GAIN vs. RF FREQUENCY
MAX19998 toc71
11 10 CONVERSION GAIN (dB) 9 8 7 6 3000 3200 3400 3600 3800
11 10 CONVERSION GAIN (dB) 9 8
11 10 CONVERSION GAIN (dB) 9 8
TC = -40C TC = +25C
PLO = -3dBm, 0dBm, +3dBm
7 6
VCC = 4.75V, 5.0V, 5.25V
7 6
TC = +85C
4000
3000
3200
3400
3600
3800
4000
3000
3200
3400
3600
3800
4000
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
MAX19998 toc72
INPUT IP3 vs. RF FREQUENCY
MAX19998 toc73
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE VCC = 5.25V
INPUT IP3 (dBm) 25
MAX19998 toc74 MAX19998 toc77
26
PRF = -5dBm/TONE TC = +85C TC = +25C
26
PRF = -5dBm/TONE
26
INPUT IP3 (dBm)
INPUT IP3 (dBm)
25
25
24
TC = -40C
24
PLO = -3dBm, 0dBm, +3dBm
VCC = 5.0V
24
VCC = 4.75V
23 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
23 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
23 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
2LO - 2RF RESPONSE vs. RF FREQUENCY
MAX19998 toc75
2LO - 2RF RESPONSE vs. RF FREQUENCY
PRF = -5dBm
MAX19998 toc76
2LO - 2RF RESPONSE vs. RF FREQUENCY
90
90
PRF = -5dBm
90
PRF = -5dBm
2LO - 2RF RESPONSE (dBc)
2LO - 2RF RESPONSE (dBc)
80
80
2LO - 2RF RESPONSE (dBc)
80
TC = +85C
70
PLO = +3dBm
70
70
TC = +25C
60
60
PLO = -3dBm PLO = 0dBm
60
TC = -40C
50 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) 50 3000
VCC = 4.75V, 5.0V, 5.25V
50 3200 3400 3600 3800 4000 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz) RF FREQUENCY (MHz)
16
_____________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
3LO - 3RF RESPONSE vs. RF FREQUENCY
MAX19998 toc78
MAX19998
3LO - 3RF RESPONSE vs. RF FREQUENCY
MAX19998 toc79
3LO - 3RF RESPONSE vs. RF FREQUENCY
PRF = -5dBm
MAX19998 toc80
95
PRF = -5dBm TC = +85C
95
PRF = -5dBm
95
3LO - 3RF RESPONSE (dBc)
3LO - 3RF RESPONSE (dBc)
85
85
3LO - 3RF RESPONSE (dBc)
85
75
TC = +25C TC = -40C
75
75
PLO = -3dBm, 0dBm, +3dBm
65
VCC = 4.75V, 5.0V, 5.25V
65
65
55 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
55 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
55 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
MAX19998 toc81
NOISE FIGURE vs. RF FREQUENCY
MAX19998 toc82
NOISE FIGURE vs. RF FREQUENCY
MAX19998 toc83
12 11 NOISE FIGURE (dB) 10 9 8
12 11 NOISE FIGURE (dB) 10 9
12 11 NOISE FIGURE (dB) 10 9
TC = +85C TC = +25C
PLO = -3dBm, 0dBm, +3dBm
8
VCC = 4.75V, 5.0V, 5.25V
8 7
TC = -40C
7 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) 7 3000 3175 3350 3525 3700 RF FREQUENCY (MHz) 3000 3175 3350 3525 3700
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
MAX19998 toc84
INPUT P1dB vs. RF FREQUENCY
MAX19998 toc85
INPUT P1dB vs. RF FREQUENCY
VCC = 5.25V
MAX19998 toc86
13
13
13
TC = +85C
12 INPUT P1dB (dBm)
12 INPUT P1dB (dBm)
12 INPUT P1dB (dBm)
VCC = 5.0V
11
11
11
TC = +25C
10
PLO = -3dBm, 0dBm, +3dBm
10
VCC = 4.75V
10
TC = -40C
9 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
9 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
9 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
______________________________________________________________________________________
17
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19998 toc87
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19998 toc88
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19998 toc89
-10
-10
-10
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT (dBm)
-20
TC = +25C
-20
LO LEAKAGE AT IF PORT (dBm)
TC = -40C
-20
TC = +85C
-30
-30
PLO = -3dBm, 0dBm, +3dBm
-30
VCC = 4.75V, 5.0V, 5.25V
-40 3000 3500 3700 3900 4100 4300 LO FREQUENCY (MHz)
-40 3000 3500 3700 3900 4100 4300 LO FREQUENCY (MHz)
-40 3000 3500 3700 3900 4100 4300 LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19998 toc90
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19998 toc91
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19998 toc92
50
50
50
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
TC = +85C
30
30
RF-TO-IF ISOLATION (dB)
40
40
40
30
20
TC = +25C
TC = -40C
20
PLO = -3dBm, 0dBm, +3dBm
20
VCC = 4.75V, 5.0V, 5.25V
10 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
10 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
10 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc93
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc94
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc95
-20 LO LEAKAGE AT RF PORT (dBm)
-20 LO LEAKAGE AT RF PORT (dBm)
-20 LO LEAKAGE AT RF PORT (dBm)
-25
TC = +85C
-25
-25
-30
-30
-30
TC = +25C
-35
TC = -40C
-35
PLO = -3dBm, 0dBm, +3dBm
-35
VCC = 4.75V, 5.0V, 5.25V
-40 3300 3550 3800 4050 4300 LO FREQUENCY (MHz)
-40 3300 3550 3800 4050 4300 LO FREQUENCY (MHz)
-40 3300 3550 3800 4050 4300 LO FREQUENCY (MHz)
18
_____________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc96
MAX19998
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc97
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc98
-10 2LO LEAKAGE AT RF PORT (dBm)
-10 2LO LEAKAGE AT RF PORT (dBm)
-10 2LO LEAKAGE AT RF PORT (dBm)
-20
TC = -40C TC = +85C TC = +25C
PLO = +3dBm
-20
-20
PLO = -3dBm
-30
VCC = 4.75V, 5.0V, 5.25V
-30
-30
PLO = 0dBm
-40 3300 3550 3800 4050 4300 LO FREQUENCY (MHz)
-40 3300 3550 3800 4050 4300 LO FREQUENCY (MHz)
-40 3300 3550 3800 4050 4300 LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
fIF = 300MHz
MAX19998 toc99
IF PORT RETURN LOSS vs. IF FREQUENCY
fLO = 4100MHz
IF PORT RETURN LOSS (dB) 10 20 30 40 50
MAX19998 toc100
0
0
RF PORT RETURN LOSS (dB)
10
20
VCC = 4.75V, 5.0V, 5.25V
30
PLO = -3dBm, 0dBm, +3dBm
40 3000 3200 3400 3600 3800 4000 RF FREQUENCY (MHz)
50
140
230
320
410
500
IF FREQUENCY (MHz)
LO PORT RETURN LOSS vs. LO FREQUENCY
MAX19998 toc101
SUPPLY CURRENT vs. TEMPERATURE (TC)
MAX19998 toc102
0
250 240 SUPPLY CURRENT (mA) 230 220
LO PORT RETURN LOSS (dB)
VCC = 5.25V
10
PLO = -3dBm
VCC = 5.0V
20
PLO = 0dBm
VCC = 4.75V
210 200
PLO = +3dBm
30 2700 3100 3500 3900 4300 LO FREQUENCY (MHz)
-40
-15
10
35
60
65
TEMPERATURE (C)
______________________________________________________________________________________
19
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
CONVERSION GAIN vs. RF FREQUENCY
MAX19998 toc103
CONVERSION GAIN vs. RF FREQUENCY
MAX19998 toc104
CONVERSION GAIN vs. RF FREQUENCY
MAX19998 toc105
11 10 CONVERSION GAIN (dB) 9 8 7 6 2300 2450 2600 2750 TC = -40C TC = +25C
11 10 CONVERSION GAIN (dB) 9 8 PLO = -3dBm, 0dBm, +3dBm 7 6
11 10 CONVERSION GAIN (dB) 9 8 VCC = 4.75V, 5.0V, 5.25V 7 6
TC = +85C
2900
2300
2450
2600
2750
2900
2300
2450
2600
2750
2900
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
MAX19998 toc106
INPUT IP3 vs. RF FREQUENCY
MAX19998 toc107
INPUT IP3 vs. RF FREQUENCY
PRF = -5dBm/TONE 26 INPUT IP3 (dBm) VCC = 5.25V 25 VCC = 5.0V VCC = 4.75V
MAX19998 toc108
27 PRF = -5dBm/TONE 26 INPUT IP3 (dBm) TC = +85C
27 PRF = -5dBm/TONE 26 INPUT IP3 (dBm)
27
TC = +25C
25
25 PLO = -3dBm, 0dBm, +3dBm
24
TC = -40C
24
24
23 2300 2450 2600 2750 2900 RF FREQUENCY (MHz)
23 2300 2450 2600 2750 2900 RF FREQUENCY (MHz)
23 2300 2450 2600 2750 2900 RF FREQUENCY (MHz)
2LO - 2RF RESPONSE vs. RF FREQUENCY
MAX19998 toc109
2LO - 2RF RESPONSE vs. RF FREQUENCY
MAX19998 toc110
2LO - 2RF RESPONSE vs. RF FREQUENCY
PRF = -5dBm 2LO - 2RF RESPONSE (dBc) 80 VCC = 4.75V
MAX19998 toc111
90 TC = +85NC 2LO - 2RF RESPONSE (dBc) 80 PRF = -5dBm
90 PRF = -5dBm 2LO - 2RF RESPONSE (dBc) 80 PLO = +3dBm
90
70 TC = -40NC
70 PLO = -3dBm PLO = 0dBm 60
70 VCC = 5.25V VCC = 5.0V 60
60
TC = +25NC
50 2300 2450 2600 2750 2900 RF FREQUENCY (MHz)
50 2300 2450 2600 2750 2900 RF FREQUENCY (MHz)
50 2300 2450 2600 2750 2900 RF FREQUENCY (MHz)
20
_____________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
3LO - 3RF RESPONSE vs. RF FREQUENCY
MAX19998 toc112
MAX19998
3LO - 3RF RESPONSE vs. RF FREQUENCY
MAX19998 toc113
3LO - 3RF RESPONSE vs. RF FREQUENCY
PRF = -5dBm 3LO - 3RF RESPONSE (dBc) 85
MAX19998 toc114
95 PRF = -5dBm 3LO - 3RF RESPONSE (dBc) 85 TC = +85NC
95 PRF = -5dBm 3LO - 3RF RESPONSE (dBc) 85
95
75 TC = -40NC 65
TC = +25NC
75 PLO = -3dBm, 0dBm, +3dBm 65
75 VCC = 4.75V, 5.0V, 5.25V 65
55 2300 2450 2600 2750 2900 RF FREQUENCY (MHz)
55 2300 2450 2600 2750 2900 RF FREQUENCY (MHz)
55 2300 2450 2600 2750 2900 RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
MAX19998 toc115
NOISE FIGURE vs. RF FREQUENCY
MAX19998 toc116
NOISE FIGURE vs. RF FREQUENCY
MAX19998 toc117
13 12 NOISE FIGURE (dB) 11 10 TC = -40NC 9 8 2300 2450 2600 2750 TC = +85NC
13 12 NOISE FIGURE (dB) 11 10 9 8
13 12 NOISE FIGURE (dB) VCC = 4.75V 11 10 9 8 VCC = 5.25V VCC = 5.0V
TC = +25NC
PLO = -3dBm, 0dBm, +3dBm
2900
2300
2450
2600
2750
2900
2300
2450
2600
2750
2900
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
MAX19998 toc118
INPUT P1dB vs. RF FREQUENCY
MAX19998 toc119
INPUT P1dB vs. RF FREQUENCY
VCC = 5.25V
MAX19998 toc120
13
TC = +85NC
13
13 VCC = 5.0V
12
INPUT P1dB (dBm)
12
INPUT P1dB (dBm)
12
INPUT P1dB (dBm)
11 TC = -40NC 10
TC = +25NC
11 PLO = -3dBm, 0dBm, +3dBm 10
11 VCC = 4.75V 10
9 2300 2450 2600 2750 2900 RF FREQUENCY (MHz)
9 2300 2450 2600 2750 2900 RF FREQUENCY (MHz)
9 2300 2450 2600 2750 2900 RF FREQUENCY (MHz)
______________________________________________________________________________________
21
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19998 toc121
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19998 toc122
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX19998 toc123
-10
-10
-10
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT (dBm)
-20
TC = +85C
TC = +25C
-20
LO LEAKAGE AT IF PORT (dBm)
-20
-30 TC = -40C
-30 PLO = -3dBm, 0dBm, +3dBm
-30 VCC = 4.75V, 5.0V, 5.25V
-40 2600 2750 2900 3050 3200 RF FREQUENCY (MHz)
-40 2600 2750 2900 3050 3200 RF FREQUENCY (MHz)
-40 2600 2750 2900 3050 3200 LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19998 toc124
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX19998 toc125
RF-TO-IF ISOLATION vs. RF FREQUENCY
VCC = 5.25V RF-TO-IF ISOLATION (dB) 50 VCC = 5.0V
MAX19998 toc126
60
60
60
RF-TO-IF ISOLATION (dB)
50
RF-TO-IF ISOLATION (dB)
TC = +85NC
50
40
TC = +25NC TC = -40NC
40
PLO = -3dBm, 0dBm, +3dBm
40
VCC = 4.75V
30 2300 2450 2600 2750 2900 RF FREQUENCY (MHz)
30 2300 2450 2600 2750 2900 RF FREQUENCY (MHz)
30 2300 2450 2600 2750 2900 RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc127
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc128
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc129
-20 LO LEAKAGE AT RF PORT (dBm) TC = -40NC -25
-20 LO LEAKAGE AT RF PORT (dBm)
-20 LO LEAKAGE AT RF PORT (dBm)
-25
-25
-30 TC = +25NC -35 TC = +85NC
-30 PLO = -3dBm, 0dBm, +3dBm -35
-30 VCC = 4.75V, 5.0V, 5.25V -35
-40 2500 3000 3500 4000 LO FREQUENCY (MHz)
-40 2500 3000 3500 4000 LO FREQUENCY (MHz)
-40 2500 3000 3500 4000 LO FREQUENCY (MHz)
22
_____________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2300MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = -5dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc130
MAX19998
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc131
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
MAX19998 toc132
-20 2LO LEAKAGE AT RF PORT (dBm)
-20 2LO LEAKAGE AT RF PORT (dBm)
-20 2LO LEAKAGE AT RF PORT (dBm)
-30
TC = -40NC
-30
PLO = +3dBm
-30
VCC = 4.75V
VCC = 5.0V
-40 TC = +25NC -50 TC = +85NC
-40 PLO = 0dBm -50 PLO = -3dBm
-40 VCC = 5.25V -50
-60 2500 3000 3500 4000 LO FREQUENCY (MHz)
-60 2500 3000 3500 4000 LO FREQUENCY (MHz)
-60 2500 3000 3500 4000 LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
MAX19998 toc133
IF PORT RETURN LOSS vs. IF FREQUENCY
fLO = 3000MHz IF PORT RETURN LOSS (dB) 10 VCC = 4.75V, 5.0V, 5.25V 20 30 40 50
MAX19998 toc134
0 fIF = 300MHz RF PORT RETURN LOSS (dB) 10
0
20
30 PLO = -3dBm, 0dBm, +3dBm 40 2300 2450 2600 2750 2900 RF FREQUENCY (MHz)
50
140
230
320
410
500
IF FREQUENCY (MHz)
LO PORT RETURN LOSS vs. LO FREQUENCY
MAX19998 toc135
SUPPLY CURRENT vs. TEMPERATURE (TC)
MAX19998 toc136
0
250 240
SUPPLY CURRENT (mA)
LO PORT RETURN LOSS (dB)
VCC = 5.25V
10
PLO = -3dBm
VCC = 5.0V
230 220
VCC = 4.75V
20 PLO = 0dBm PLO = +3dBm
210 200
30 2600 2950 3300 3650 4000 LO FREQUENCY (MHz)
-40
-15
10
35
60
85
TEMPERATURE (C)
______________________________________________________________________________________
23
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998
Pin Configuration/Functional Diagram
IFBIAS
TOP VIEW
20 VCC 1
19
18
17
LEXT 16 15 GND
RF
2
MAX19998
GND
IF+
IF-
14
VCC
GND
3
13
GND
GND
4 EP
12
GND
GND
5 6 VCC 7 LOBIAS 8 VCC 9 GND 10 GND
11
LO
Pin Description
PIN 1, 6, 8, 14 2 3, 9, 13, 15 4, 5, 10, 12, 17 7 11 16 18, 19 20 -- NAME VCC RF GND GND LOBIAS LO LEXT IF-, IF+ IFBIAS EP FUNCTION Power Supply. Bypass to GND with 0.01FF capacitors as close as possible to the pin. Single-Ended 50I RF Input. Internally matched and DC shorted to GND through a balun. Provide an input DC-blocking capacitor if required. Ground. Not internally connected. Pins can be grounded. Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad (EP) together. LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 604I (5V, 230mA bias condition) from LOBIAS to ground. Local Oscillator Input. This input is internally matched to 50I. Requires an input DC-blocking capacitor. External Inductor Connection. Connect a low-ESR 4.7nH inductor from this pin to ground to increase the RF-to-IF and LO-to-IF isolation. Connect this pin directly to ground to reduce the component count at the expense of reduced RF-to-IF and LO-to-IF isolation. Mixer Differential IF Output. Connect pullup inductors from each of these pins to VCC (see the Typical Application Circuit). IF Amplifier Bias Control. IF bias resistor connection for the IF amplifier. Connect a 698I (5V, 230mA bias condition) from IFBIAS to GND. Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the noted RF performance.
24
_____________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
Detailed Description
The MAX19998 provides high linearity and low noise figure for a multitude of 2300MHz to 4000MHz WiMAX, LTE, and MMDS base-station applications. This device operates over a 2600MHz to 4300MHz LO range and a 50MHz to 500MHz IF range. Integrated baluns and matching circuitry allow 50I single-ended interfaces to the RF and LO ports. The integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX19998's input to a range of -3dBm to +3dBm. The IF port incorporates a differential output, which is ideal for providing enhanced 2RF - 2LO and 2LO - 2RF performance. The MAX19998 RF input provides a 50I match when combined with a series DC-blocking capacitor. This DC-blocking capacitor is required as the input is internally DC shorted to ground through the on-chip balun. When using an 8.2pF DC-blocking capacitor, the RF port input return loss is typically 17dB over the RF frequency range of 3200MHz to 3900MHz. See Table 1 for lower band tuning. The LO input is internally matched to 50I, requiring only a 2pF DC-blocking capacitor. A two-stage internal LO buffer allows for a -3dBm to +3dBm LO input power range. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip. The core of the MAX19998 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. When combined with the integrated IF amplifier, IIP3, 2RF - 2LO rejection, and noise-figure performance are typically +24.3dBm, 67dBc, and 9.7dB, respectively, for low-side LO injection architectures covering the 3000MHz to 4000MHz RF band. The MAX19998 has a 50MHz to 500MHz IF frequency range, where the low-end frequency depends on the frequency response of the external IF components. The MAX19998 mixer is tuned for a 300MHz IF using 390nH external pullup bias inductors. Lower IF frequencies would require higher L1 and L2 inductor values to maintain a good IF match. The differential, open-collector IF output ports require that these inductors be connected to VCC. Note that these differential ports are ideal for providing enhanced 2RF - 2LO performance. Single-ended IF applications require a 4:1 (impedance ratio) balun to transform the 200I differential IF impedance to a 50I single-ended system. Use the TC4-1W-17 4:1 transformer for IF frequencies above 200MHz and the TC4-1W-7A 4:1 transformer for frequencies below 200MHz. The user can use a differential IF amplifier or SAW filter on the mixer IF port, but a DC block is required on both IF+/ IF- ports to keep external DC from entering the IF ports of the mixer.
MAX19998
RF Input and Balun
Applications Information
The RF and LO inputs provide 50I matches when combined with the proper tuning. Use an 8.2pF capacitor value on the RF port for frequencies ranging from 3000MHz to 4000MHz. Use a 3.3nH series inductor and a 0.3pF shunt capacitor on the RF port for frequencies ranging from 2300MHz to 2900MHz. On the LO port, use a 2pF DC-blocking capacitor to cover operations spanning the 2600MHz to 4300MHz range. The IF output impedance is 200I (differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance down to a 50I single-ended output (see the Typical Application Circuit). The MAX19998 has two pins (LOBIAS, IFBIAS) that allow external resistors to set the internal bias currents. See Table 1 for nominal values for these resistors. Larger value resistors can be used to reduce power dissipation at the expense of some performance loss. If Q1% resistors are not readily available, substitute with Q5% resistors. Significant reductions in power consumption can also be realized by operating the mixer with an optional supply voltage of 3.3V. Doing so reduces the overall power consumption by 57% (typ). See the 3.3V Supply AC Electrical Characteristics table and the relevant 3.3V curves in the Typical Operating Characteristics section to evaluate the power vs. performance trade-offs.
Input and Output Matching
LO Inputs, Buffer, and Balun
High-Linearity Mixer
Reduced-Power Mode
Differential IF Output Amplifier
______________________________________________________________________________________
25
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998
Short LEXT to ground using a 0I resistor. For applications requiring improved RF-to-IF and LO-to-IF isolation, L3 can be changed to optimize performance (see the Typical Operating Characteristics). However, the load impedance presented to the mixer must be such that any capacitances from IF- and IF+ to ground do not exceed several picofarads to ensure stable operating conditions. Since approximately 120mA flows through LEXT, it is important to use a low-DCR wire-wound inductor.
LEXT Inductor
A properly designed PCB is an essential part of any RF/ microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. The load impedance presented to the mixer must be such that any capacitance from both IF- and IF+ to ground
Layout Considerations
does not exceed several picofarads. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX19998 evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com. Proper voltage supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the capacitors shown in the Typical Application Circuit and see Table 1 for component values.
Power-Supply Bypassing
Table 1. Component Values
DESIGNATION QTY DESCRIPTION COMPONENT SUPPLIER 8.2pF microwave capacitor (0402). Use for RF Murata Electronics North America, Inc. frequencies ranging from 3000MHz to 4000MHz. 3.3nH microwave inductor (0402). Use for RF Coilcraft, Inc. frequencies ranging from 2300MHz to 2900MHz. 0.01FF microwave capacitors (0402) Not installed, capacitors 2pF microwave capacitor (0402) 1000pF microwave capacitors (0402) 82pF microwave capacitor (0402) Not installed for RF frequencies ranging from 3000MHz to 4000MHz Murata Electronics North America, Inc. -- Murata Electronics North America, Inc. Murata Electronics North America, Inc. Murata Electronics North America, Inc. --
C1
1
C2, C6, C8, C11 C3, C9 C10 C13, C14 C15
4 0 1 2 1
C16
1
0.3pF microwave capacitor (0402). Use for RF Murata Electronics North America, Inc. frequencies ranging from 2300MHz to 2900MHz. 390nH wire-wound high-Q inductors* (0805) 4.7nH wire-wound high-Q inductor (0603) 698I Q1% resistor (0402). Use for VCC = 5.0V applications. 845I Q1% resistor (0402). Use for VCC = 3.3V applications. 604I Q1% resistor (0402). Use for VCC = 5.0V applications. 1.1kI Q1% resistor (0402). Use for VCC = 3.3V applications. 0I resistor (1206) 4:1 IF balun TC4-1W-17* MAX19998 IC (20 Thin QFN-EP) Coilcraft, Inc. Coilcraft, Inc.
L1, L2 L3
2 1
R1
1
Digi-Key Corp.
R2
1
Digi-Key Corp.
R3 T1 U1
1 1 1
Digi-Key Corp. Mini-Circuits Maxim Integrated Products, Inc.
*Use larger value inductors and a TC4-1W-7A 4:1 balun for IF frequencies below 200MHz. 26 _____________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer
The exposed pad QFN-EP package path to the die. It the MAX19998 is
Exposed Pad RF/Thermal Considerations
(EP) of the MAX19998's 20-pin thin provides a low thermal-resistance is important that the PCB on which mounted be designed to conduct
heat from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.
MAX19998
Typical Application Circuit
C15 L1 C13 R3 C14 R1 L2 2 1 4:1 4 T1 3 6 IF OUTPUT
L3 IFBIAS IF+ IF+5.0V LEXT 16 15 GND GND 17
20 C3 C2 VCC 1
19
18
U1 MAX19998
RF INPUT
C1 C16*
RF
2
14
VCC C11
+5.0V
GND
3
13
GND
GND
4 EP
12
GND C10 LO INPUT
GND
5 6 VCC 7 LOBIAS 8 VCC 9 GND 10 GND
11
LO
+5.0V C6
R2 NOTE: PINS 4, 5, 10, 12, AND 17 ARE ALL INTERNALLY CONNECTED TO THE EXPOSED GROUND PAD. CONNECT THESE PINS TO GROUND TO IMPROVE ISOLATION. PINS 3, 9, 13, AND 15 HAVE NO INTERNAL CONNECTION, BUT CAN BE EXTERNALLY GROUNDED TO IMPROVE ISOLATION. *C16 NOT USED FOR 3000MHz TO 4000MHz APPLICATIONS.
+5.0V C8 C9
______________________________________________________________________________________
27
SiGe, High-Linearity, 2300MHz to 4000MHz Downconversion Mixer with LO Buffer MAX19998
Chip Information
PROCESS: SiGe BiCMOS
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
PACKAGE TYPE 20 Thin QFN-EP PACKAGE CODE T2055+3 DOCUMENT NO. 21-0140
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
28
(c)
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.


▲Up To Search▲   

 
Price & Availability of MAX19998ETP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X